(一)Wide Bandgap Semiconductors and Their Prospects in Modern Electronics(語言:英文)
We are witnessing one of the most significant transformations of society where electronics are playing a visibly important role. (Semiconductor) Chips gained more media attention when their shortage became a global crisis. Modern electronics stands majorly on the success of Silicon, but it is undeniable that the roadmap to more energy-efficient, compact, AI-controlled, self-powered, and versatile electronics requires more than Silicon to keep up. Among all these new waves of technology, the idea of achieving a carbon-free energy system by 2050 is now more than a commitment and requires energy efficient electronics at every level. Higher power density, higher operating frequency and more temperature tolerance are highly welcome in todays and future application.
Wide-bandgap (WBG) semiconductors present a pathway to enable much of these electronics with higher frequencies, higher power densities, and at higher temperatures, enabling newer functionalities. WBG devices with higher power density have unprecedented value in both power and high frequency electronics. The roadmap looks promising with, and beyond, GaN, thanks to materials like (Ga, Al) Oxides, diamond and others. WBGs have been successfully integrated into circuit boards to drive applications. However, to extract the anticipated efficiencies from a WBG driven system, sometimes circuit innovations are essential at a higher novelty. The success of gallium nitride has opened the door to other ultra-wide bandgap materials, presenting a new area of research covering a wide spectrum from materials, physics, devices, and applications. I will go over the power and thermal aspects of these materials through our recent results.
我們正在見證最重大的社會轉型,在這個過程中,電子產品扮演著極重要的角色。在晶片短缺成為全球危機之時,也同時受到更多的媒體關注。現代電子產品的發展中,矽材料功不可沒,但無可否認的是,要實現更節能、小型、具有AI控制、自供電及多功能的電子產品,需要的材料不僅僅是矽。在所有的新技術浪潮中,在2050年達成無碳能源系統不僅僅是一項承諾,而是需要在每個層面上都實現高效能電子產品的目標。在現在和未來的應用中,更高的功率密度、工作頻率及耐溫性都將備受歡迎。
寬能隙半導體可以實現更高頻率、功率密度及高耐溫性的電子產品,也能促使其發展出更多的功能。在功率更高的寬能隙元件中,其高功率及高頻的價值都是前所未有的。在GaN及其他材料,如氧化鎵、氧化鋁、鑽石的幫助下,寬能隙技術的發展充滿希望。寬能隙材料已成功集成至電路板上做為驅動應用,但為了從寬能隙驅動系統提取更高的效率,有時需要進行電路創新。氮化鎵的成功為其他超寬能隙的材料打開了大門,提供從材料、物理、元件及應用的廣泛研究領域。本演講將介紹這些材料在功率和熱能等方面的性能。
(二)分析鑑定氧化鎵Ga2O3半導體元件的奈米材料分析技術(語言:中文)
氧化鎵號稱第四類半導體,屬寬能隙 (4.2電子伏特 (eV) 以上) 半導體材料,此材料的優點在製程比碳化矽和氮化鎵更容易。同樣的運算速度下,電力耗損僅是矽的3400 分之1 左右,與碳化矽相比也僅10 分之1。氧化鎵晶體的製造成本較矽略高,但只有碳化矽的三分之一。然而因為被注意到的時間較晚,近10年內才開始受到產業關注,目前氧化鎵晶圓的研究和生產仍然處於早期階段,半導體元件的製作更有許多材料搭配的問題待研究。
半導體製程進入奈米製程節點後,困難度大幅提升,台積電藉由大量的微奈米材料分析,尤其是穿透式電鏡 (TEM) 材料分析,協助半導體奈米製程的開發,使最高精準度達到一層原子 (~0.3 nm) 的厚度,最終超越英代爾,成為半導體製程界的霸主。根據測不準原理,尺寸愈小,雜訊 (或假訊) 就愈大。如何有效利用TEM材料分析的高解析性能,同時減少錯誤解讀分析資料的內含訊息,有效率地協助氧化鎵半導體奈米製程的技術開發,是此課程的重點,大綱摘要如下
(1). 氧化鎵簡介 (Introduction of Ga2O3)
- 奈米材料分析對半導體製程開發的重要性 (Importance of nano-MA in the development of semiconductor process of nano scale)
(2). TEM試片製做與可能的損傷 (TEM sample preparation and possible induced damage)
(3). 原子級界面分析 (Interfacial analysis - atomical scale)
(4). TEM/EDS在C, N, O等輕元素分析上的困惑 (Puzzles in analysis of light elements (C, N, O) by TEM/EDS)
(5). 氮化鎵/氧化鎵分析案例 (A case study of GaN/Ga2O3)
(6). 結論 (Conclusions)